Abstract

A functional Na+/K+-ATPase consists of a catalytic α subunit and a regulatory β subunit. Four α isoforms of the Na+/K+-ATPase are found in mammals, each with a unique expression pattern and catalytic activity. The α2 isoform, encoded by the ATP1A2 gene, is primarily found in the central nervous system (CNS) and in heart-, skeletal- and smooth muscle tissues. In the CNS, the α2 isoform is mainly expressed in glial cells. In particular, the α2 isoform is found in astrocytes, important for astrocytic K+ clearance and, consequently, the indirect uptake of neurotransmitters. Both processes are essential for proper brain activity, and autosomal dominantly mutations in the ATP1A2 gene cause the neurological disorder Familial hemiplegic migraine type 2 (FHM2). FHM2 is a severe subtype of migraine with aura including temporary numbness or weakness, and affecting only one side of the body. FHM2 patients often suffer from neurological comorbidities such as seizures, sensory disturbances, cognitive impairment, and psychiatric manifestations. The functional consequences of FHM2 disease mutations leads to a partial or complete loss of function of pump activity; however, a clear phenotype-genotype correlation has yet to be elucidated. Gene-modified mouse models targeting the Atp1a2 gene have proved instrumental in the understanding of the pathology of FHM2. Several Atp1a2 knockout (KO) mice targeting different exons have been reported. Homozygous Atp1a2 KO mice die shortly after birth due to respiratory malfunction resulting from abnormal Cl− homeostasis in brainstem neurons. Heterozygous KO mice are viable, but display altered behavior and neurological deficits such as altered spatial learning, decreased motor activity and enhanced fear/anxiety compared to wild type mice. FHM2 knock-in (KI) mouse models carrying the human in vivo disease mutations W887R and G301R have also been reported. Both models display altered cortical spreading depression (CSD) and point to deficits in the glutamatergic system as the main underlying mechanism of FHM2.

Highlights

  • Homozygous α2KOE2/KOE2 mice with a complete loss of the α2 isoform function, exhibit severe deficits in Cl− homeostasis in vulnerable cells including the respiratory center neurons, thereby causing abnormal neuronal activity and resulting in respiratory failure upon birth

  • Reviewed by: Leif Hertz, China Medical University, China Rebecca Lam, Max Planck Institute of Biophysics, Germany

  • In the central nervous system (CNS), the α2 isoform is mainly expressed in glial cells

Read more

Summary

Introduction

Homozygous α2KOE2/KOE2 mice with a complete loss of the α2 isoform function, exhibit severe deficits in Cl− homeostasis in vulnerable cells including the respiratory center neurons, thereby causing abnormal neuronal activity and resulting in respiratory failure upon birth. Both α2+/KOE4 and α2+/KOE21 mice models displayed increased fear and anxiety behavior as the main abnormal behavioral phenotype (Ikeda et al, 2003; Lingrel et al, 2007; Moseley et al, 2007).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call