Abstract

The team signaling model for bacterial chemoreceptors proposes that receptor dimers of different detection specificities form mixed trimers of dimers that bind the cytoplasmic proteins CheA and CheW to form ternary signaling complexes clustered at the cell poles. We used a trifunctional crosslinking reagent targeted to cysteine residues in the aspartate (Tar) and serine (Tsr) receptors to obtain in vivo snapshots of trimer composition in the receptor population. To analyze the dynamics of trimer formation, we followed the appearance of mixed trimers when cells expressing Tar were induced for the expression of Tsr and treated with the crosslinker shortly after the onset of induction. In the absence of CheA or CheW, preformed Tar trimers exchanged partners readily with newly made Tsr. Conversely, in the presence of CheA and CheW, receptor trimers seldom exchanged partners, irrespective of the presence or absence of attractants. The C-terminal receptor-coupling domain of the CheA kinase, which contains binding determinants for the CheW protein, was essential for conferring low exchangeability to the preformed trimers of dimers. CheW also was required for this effect, but, unlike CheA, overexpression of CheW interfered with trimer formation and chemotactic behavior. The CheW effect probably occurs through binding interactions that mask the receptor sites needed for trimer formation. We propose that clustered receptors are organized in mixed trimers of dimers through binding interactions with CheA and CheW, which play distinctly different architectural roles. Moreover, once complete signaling teams have formed, they no longer undergo dynamic exchange of receptor members.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call