Abstract

The association of a mycotoxin-ochratoxin A (OTA)-with a high-affinity DNA aptamer (anti-OTA) immobilized on a functionalized surface has been investigated at the molecular level. Anti-OTA aptamers are coupled by aminolysis in several steps on an acid-terminated alkyl monolayer grafted on a silicon substrate, and Fourier transform infrared spectroscopy in attenuated total reflection geometry is used to assess the immobilization of anti-OTA (in its unfolded single-strand form) and determine its areal density (ca. 1.4/nm2). IR spectra further demonstrate that the OTA/anti-OTA association is efficient and selective and that several association/dissociation cycles may be conducted on the same surface. The areal density of OTA measured after association on the surface (IR spectroscopy) and after dissociation from the surface (UV-vis spectroscopy) falls in the range 0.16-0.3/nm2 which is close to the areal density of a closed-packed monolayer of anti-OTA aptamers folded to form their G-quadruplex structure. The interactions between OTA and its aptamer at the surface are discussed with the help of density functional theory calculations-to identify the complex IR vibrational modes of OTA in solution-and UV-vis spectroscopy-to determine the protonation state of the adsorbing species (i.e., OTA dissolved in the buffer solution).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call