Abstract

Abstract Purpose Factors that determine the likelihood of developing posterior vitreous detachment and subsequent rhegmatogenous retinal detachment (RRD) include (i) the degree of vitreous liquefaction (ii) the strength of post‐basal vitreoretinal adhesion and (iii) the topology of the posterior border of the vitreous base. The purpose of these studies was to investigate each of these using a combination of ultrastructural and molecular techniques. Methods Ultrastructural studies of the human vitreous and vitreoretinal interface were performed in combination with various antibodies and cationic dyes. Biochemical studies were performed on extracted vitreous components. Results The resultant data suggest that: (i) vitreous liquefaction is caused by the aggregation of vitreous collagen fibrils and this is due to a loss of type IX collagen proteoglycan from the fibril surfaces; (ii) interactions between heparan sulphate proteoglycans in the inner limiting lamina and components on the surface of cortical vitreous collagen fibrils contribute to postbasal vitreoretinal adhesion; (iii) the posterior border of the vitreous base migrates posteriorly with aging due to the synthesis of new vitreous collagen by the peripheral retina. Conclusion The molecular basis of RRD is starting to be unravelled. Furthering our understanding of the underlying molecular processes may lead to the development of novel therapeutic strategies to treat RRD and other vitreoretinal disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call