Abstract

The effect of incorporation and presence of various ingredients in a model sodium caseinate-based imitation cheese matrix on the polymorphism of milk fat was comprehensively described using powder x-ray diffraction, differential scanning calorimetry, and microscopy. With anhydrous milk fat (AMF) in bulk used as control, the embedding of AMF as droplets in a protein matrix was found to result in a greater extent of formation of the β polymorph than AMF alone and AMF homogenized with water and salts solution. The use of other protein matrices such as soy and whey protein isolate gels revealed that the nature of the protein and other factors associated with it (i.e., hydrophobicity and molecular structure) do not seem to play a role in the formation of the β polymorph. These results indicated that the most important factor in the formation of the β polymorph is the physical constraints imposed by a solid protein matrix, which forces the triacylglycerols in milk fat to arrange themselves in the most stable crystal polymorph. Characterization of the crystal structure of milk fat or fats in general within a food matrix could provide insights into the complex thermal and rheological behavior of foods with added fats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call