Abstract

Understanding the formation of β-fibrils over the gold surface is of paramount interest in nano-bio-medicinal Chemistry. The intricate mechanism of self-assembly of neurofibrillogenic peptides and their growth over the gold surface remains elusive, as experiments are limited in unveiling the microscopic dynamic details, in particular, at the early stage of the peptide aggregation. In this work, we carried out equilibrium molecular dynamics and enhanced sampling simulations to elucidate the underlying mechanism of the growth of an amyloid-forming sequence of tau fragments over the gold surface. Our results disclose that the collective intermolecular interactions between the peptide chains and peptides with the gold surface facilitate the peptide adsorption, followed by integration, finally leading to the fibril formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call