Abstract
Oxidative stress adaptation strategies are important to cell function and are linked to cardiac, neurodegenerative disease, and cancer. Representatives of the Archaea domain are used as model organisms based on their extreme tolerance to oxidants and close evolutionary relationship with eukaryotes. A study of the halophilic archaeon Haloferax volcanii reveals lysine acetylation to be associated with oxidative stress responses. The strong oxidant hypochlorite: (i) stimulates an increase in lysine acetyltransferase HvPat2 to HvPat1 abundance ratios and (ii) selects for lysine deacetylase sir2 mutants. Here we report the dynamic occupancy of the lysine acetylome of glycerol-grown H. volcanii as it shifts in profile in response to hypochlorite. These findings are revealed by the: (1) quantitative multiplex proteomics of the SILAC-compatible parent and Δsir2 mutant strains and (2) label-free proteomics of H26 'wild type' cells. The results show that lysine acetylation is associated with key biological processes including DNA topology, central metabolism, cobalamin biosynthesis, and translation. Lysine acetylation targets are found conserved across species. Moreover, lysine residues modified by acetylation and ubiquitin-like sampylation are identified suggesting post-translational modification (PTM) crosstalk. Overall, the results of this study expand the current knowledge of lysine acetylation in Archaea, with the long-term goal to provide a balanced evolutionary perspective of PTM systems in living organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Antioxidants
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.