Abstract

X-ray photoelectron spectroscopy (XPS) is a widely used technique to study surfaces and interfaces. In complex chemical systems, however, interpretation of the XPS results and peak assignments is not straightforward. This is not least true for Li-batteries, where XPS yet remains a standard technique for interface characterization. In this work, a combined density functional theory (DFT) and experimental XPS study is carried out to obtain the C 1s and O 1s core-level binding energies of organic carbonate molecules on the surface of Li metal. Decomposition of organic carbonates is frequently encountered in electrochemical cells employing this electrode, contributing to the build up of a complex solid electrolyte interphase (SEI). The goal in this current study is to identify the XPS fingerprints of the formed compounds, degradation pathways, and thereby the early formation stages of the SEI. The contribution of partial atomic charges on the core-ionized atoms and the electrostatic potential due to the surrounding atoms on the core-level binding energies, which is decisive for interpretation of the XPS spectra, are addressed based on the DFT calculations. The results display strong correlations between these two terms and the binding energies, whereas electrostatic potential is found to be the dominating factor. The organic carbonate molecules, decomposed at the surface of the Li metal, are considered based on two different decomposition pathways. The trends of calculated binding energies for products from ethereal carbon–ethereal oxygen bond cleavage in the organic carbonates are better supported when compared to the experimental XPS results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call