Abstract

The ruthenium bis-acetate complex Ru(κ(2)-OAc)(2)(PPh(3))(2) reacts with HC≡CPh to afford the vinylidene-containing species Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2). An experimental study has demonstrated that this reaction occurs under very mild conditions, with significant conversion being observed at 255 K. At lower temperatures, evidence for a transient metallo-enol ester species Ru(κ(1)-OAc)(OC{Me}O-C=CHPh)(PPh(3))(2) was obtained. A comprehensive theoretical study to probe the nature of the alkyne/vinylidene tautomerisation has been undertaken using Density Functional Theory. Calculations based on a number of isomers of the model system Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHMe)(PH(3))(2) demonstrate that both the η(2)(CC) alkyne complex Ru(κ(1)-OAc)(κ(2)-OAc)(η(2)-HC≡CMe)(PH(3))(2) and the C-H agostic σ-complex Ru(κ(1)-OAc)(κ(2)-OAc)(η(2){CH}-HC≡CMe)(PH(3))(2) are minima on the potential energy surface. The lowest energy pathway for the formation of the vinylidene complex involves the intramolecular deprotonation of the σ-complex by an acetate ligand followed by reprotonation of the subsequently formed alkynyl ligand. This process is thus termed a Ligand-Assisted Proton Shuttle (LAPS). Calculations performed on the full experimental system Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2) reinforce the notion that lowest energy pathway involves the deprotonation/reprotonation of the alkyne by an acetate ligand. Inclusion of the full ligand substituents in the calculations are necessary to reproduce the experimental observation of Ru(κ(1)-OAc)(κ(2)-OAc)(=C=CHPh)(PPh(3))(2) as the thermodynamic product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call