Abstract

In the present study, combining spectroscopic and molecular modeling techniques has been used to analyze azinphos-methyl binding properties, as an organophosphorus pesticide, to bovine serum albumin. The quenching interaction of azinphos-methyl with bovine serum albumin was investigated in an appropriate physiological state (pH = 7.4). Fluorescence spectroscopy, UV–visible spectroscopy, circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). Findings showed differences in the secondary protein structure microenvironment following interaction with azinphos-methyl. The results from spectroscopic experiments suggest that azinphos-methyl binds to bovine serum albumin residues with a binding constant in the range of 0.099 × 105−0.209 × 105 M −1 in one binding site (Tyr 160). The experimental results are supported by computational techniques such as docking using a bovine serum albumin crystal model. The results show that azinphos-methyl is linked to the site I of bovine serum albumin (in subdomain IB), and the result was in accordance with the experimental result. Based on the negative ΔG°, ΔH° and ΔS° values, the binding between azinphos-methyl and bovine serum albumin was spontaneous, and docking studies confirmed hydrogen bonding and van der Waals forces between them. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.