Abstract

Nano-plastics (NPs), an emerging contaminant in the environment, have a larger specific surface area and can act as a carrier of other contaminants. Thus, insights into the interaction mechanisms between NPs and other pollutants are crucial for the assessment of environmental impacts of NPs in the ecosystems. In this study, the interaction mechanism between NPs and ofloxacin (OFL) were investigated via kinetics, fluorescence quenching, and two-dimensional correlation spectroscopy (2DCOS). The adsorption kinetics of OFL on carboxyl-modified polystyrene (PS-COOH) and amine modified polystyrene (PS-NH2) closely fitted the pseudo-second-order kinetics model (R2 = 0.99). Adsorption kinetics indicated that chemical adsorption is dominant mechanism, and the Fourier Transform Infrared Spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS) results showed that the electronic interaction, π-π, and H-binding were also involved in the adsorption process. OFL showed strong fluorescence quenching in the presence of NPs. Stern-Volmer quenching was negatively related with the temperature, which was dominated by the static type of quenching. 2DCOS indicated that the π-π conjugation was dominant in the interaction process, and the interaction process was dependent on the solution pH and salinity. Overall, this work provides new insights into the interaction mechanism of NPs and antibiotics in the aquatic ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call