Abstract
Here, a low-cost acid-base and temperature tolerant algal bloom derived activated carbon (ABAC) was successfully prepared to remove rhodamine B (RhB) from water. The ABAC exhibited maximum adsorption capacity of RhB (1101 ± 11 mg/g), higher than that of laboratory-prepared rape straw activated carbon (176 ± 5 mg/g) and commercial activated carbon (489 ± 5 mg/g). It is attributed to larger surface area and mesoporous structure of the ABAC. Furthermore, the effective adsorption of RhB by using ABAC was achieved at a wide range of solution pH (3.2–10.8) and temperature(25–50 °C). The mass transfer resistance of RhB adsorption process well depicted by Langmuir model was controlled by external mass transfer. The adsorption process involved both secondly chemisorption (H-bonds and π-π interaction) and dominated physisorption. Four dyes in river water were efficiently removed. This work provides a promising approach for developing high-absorption biomass materials for actual dye wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.