Abstract

Members of the small GTPase Ras superfamily regulate a host of systems through their ability to catalyze the GTP/GDP cycle. All family members reported thus far possess a single GTPase domain with a P-loop containing a nucleoside triphosphate hydrolase fold. Here for the first time we report a novel member from Entamoeba histolytica, EhRabX3, which harbors two GTPase domains in tandem and exhibits unique biochemical properties. A combination of biochemical and microcalorimetric studies revealed that EhRabX3 binds to a single guanine nucleotide through its N-terminal domain. Unlike most of the members of the Ras superfamily, the dissociation of the nucleotide from EhRabX3 is independent of Mg(2+), perhaps indicating a novel mechanism of nucleotide exchange by this protein. We found that EhRabX3 is extremely sluggish in hydrolyzing GTP, and that could be attributed to its atypical nucleotide binding pocket. It harbors substitutions at two positions that confer oncogenicity to Ras because of impaired GTP hydrolysis. Engineering these residues into the conserved counterparts enhanced their GTPase activity by at least 20-fold. In contrast to most of the members of the Ras superfamily, EhRabX3 lacks the prenylation motif. Using indirect immunofluorescence and biochemical fractionation, we demonstrated that the protein is distributed all over the cytosol in amoebic trophozoites. Collectively, this unique ancient GTPase exhibits a striking evolutionary divergence from the other members of the superfamily.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.