Abstract
A long-standing goal of inorganic chemists is the ability to decipher the geometric and electronic structures of chemical species. This is particularly true for the study of small molecule and biological catalysts, where this knowledge is critical for understanding how these molecules effect chemical transformations. Numerous techniques are available for this task, and collectively they have enabled detailed understanding of many complex chemical systems. Despite this battery of probes, however, challenges still remain, particularly when the structural question involves subtle perturbations of the ligands bound to a metal center, as is often the case during chemical reactions. It is here that, as an emerging probe of chemical structure, valence-to-core (VtC) X-ray emission spectroscopy (XES) holds promise. VtC XES begins with ionization of a 1s electron from a metal ion by high energy X-ray photons. Electrons residing in ligand-localized valence orbitals decay to fill the 1s hole, emitting fluorescent photons in the process; in this manner, VtC XES primarily probes the filled, ligand-based orbitals of a metal complex. This is in contrast to other X-ray based techniques, such as K-edge X-ray absorption and EXAFS, which probe the unoccupied d-manifold orbitals and atomic scatterers surrounding the metal, respectively. As a hard X-ray technique, VtC XES experiments can be performed on a variety of sample states and environments, enabling application to demanding systems, such as high pressure cells and dilute biological samples. VtC XES thus can offer unique insights into the geometric and electronic structures of inorganic complexes. In recent years, we have sought to use VtC XES in the study of inorganic and bioinorganic complexes; doing so, however, first required a thorough and detailed understanding of the information content of these spectra. Extensive experimental surveys of model compounds coupled to the insights provided by DFT calculated spectra of real and hypothetical compounds allowed the development of a framework whereby VtC XES spectra may be understood in terms of a molecular orbital picture. Specifically, VtC spectra may be interpreted as a probe of electronic structure for the ligands bound to a metal center, enabling access to chemical information that can be difficult to obtain with other methods. Examples of this include the ability to (1) assess the identity and number of atomic/small molecule ligands bound to a metal center, (2) quantify the degree of bond activation of a small molecule substrate, and (3) establish the protonation state of donor atoms. With this foundation established, VtC has been meaningfully applied to long-standing questions in bioinorganic chemistry, with the potential for numerous future applications in all areas of metal-mediated catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.