Abstract
Over the past century, classical approaches from microbiology and immunology have produced spectacular results in the control of infectious diseases. However, the recent SARS-COV-2 pandemic has highlighted our continued failure to control some infections. Other microorganisms still pose a threat to humanity such as HIV, Ebola, and influenza viruses. It seems that conventional approaches are not able to solve all the current problems caused by infectious diseases. Human genetics has shown that infections have a strong genetic determinism that can lead to a predisposition or resistance to infections. This explains much of the clinical variability observed in individuals infected with the same pathogen. The identification of the genetic etiology allows a better understanding of the pathogenesis of infectious diseases and, consequently, the consideration of appropriate preventive and therapeutic strategies. This review provides insights into the genetic theory and the concrete evidence to support it. We highlight the role of primary immunodeficiencies in the discovery of Mendelian and monogenic susceptibility to infections, then we show how genetic and phenotypic heterogeneity, redundancy, and resistance to infection manifest in the context of this genetic determinism. To effectively combat the constant threat of microbes, it is essential to integrate human genetics with microbiology to examine the interactions between pathogens and our immune system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.