Abstract

Systemic sclerosis (SSc; scleroderma) is a chronic, multisystem autoimmune disease characterized by vasculopathy, fibrosis, and autoantibodies. In the past decade, great efforts have been made to investigate genetic susceptibility for SSc. To date, over 20 gene loci have been identified as risk factors for SSc in large genome-wide association studies and confirmed by inde - pendent replication studies. However, the biological relevance of these genetic associations is still largely unknown. Exploring the mechanism behind these risk loci is essential to better understand disease pathogenesis and to identify novel therapeutic targets. Mouse model studies including knockout, knockin and knockdown of these genes can advance our understanding of pathogenic cellular and molecular mechanisms in human disease. Although such mouse model systems do not exactly correspond to human disease, they can provide insight into pathological mechanisms that influence disease pathways. In this review, we discuss recent findings regarding the genetic basis of SSc in the setting of genetic manipulation of these pathways in murine models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call