Abstract
Root system architecture is the spatial arrangement of roots that impacts the capacity of plants to access nutrients and water. We employed pharmacologically generated morphological and molecular phenotypes and used in situ 15N isotope labelling, to investigate whether contrasting root traits are of functional interest in relation to nitrate acquisition. Brassica napus L. were grown in solidified phytogel culture media containing 1mM KNO3 and treated with the cytokinin, 6-benzylaminopurine, the cytokinin antagonist, PI-55, or both in combination. The pharmacological treatments inhibited root elongation relative to the control. The contrasting root traits induced by PI-55 and 6-benzylaminopurine were strongly related to 15N uptake rate. Large root proliferation led to greater 15N cumulative uptake rather than greater 15N uptake efficiency per unit root length, due to a systemic response in the plant. This relationship was associated with changes in C and N resource distribution between the shoot and root, and in expression of BnNRT2.1, a nitrate transporter. The root:shoot biomass ratio was positively correlated with 15N cumulative uptake, suggesting the functional utility of root investment for nutrient acquisition. These results demonstrate that root proliferation in response to external nitrate is a behaviour which integrates local N availability and the systemic N status of the plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.