Abstract

The preform-to-fiber thermal drawing process has been recently proposed for the fabrication of fibers and microchannels with submicrometer surface textures. To better control the final architecture and reach small feature size down to tens of nanometers however, a proper understanding and modeling of the fluids dynamics at play during the fabrication of the texture is needed. Here, we present an analytical model describing comprehensively the reflow of periodic polymer micropatterns of arbitrary shape in isothermal annealing as well as in a fiber drawing process. Experiments on square-grooved thermoplastic plates subjected to both treatments show excellent agreement with the calculated theoretical values. Based on this model, we could identify a strategy and the corresponding materials to fabricate sub-100 nm surface-patterned fibers. These results deepen the understanding and control of thermal-based approaches for polymer surface texturing and open novel opportunities for textured fibers and microchannels in bioengineering, microfluidics, or smart textiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.