Abstract

Xanthomonas campestris pv. campestris is an epiphytic bacterium that can become a vascular pathogen responsible for black rot disease of crucifers. To adapt gene expression in response to ever-changing habitats, phytopathogenic bacteria have evolved signal transduction regulatory pathways, such as extracytoplasmic function (ECF) σ factors. The alternative sigma factor σ(E), encoded by rpoE, is crucial for envelope stress response and plays a role in the pathogenicity of many bacterial species. Here, we combine different approaches to investigate the role and mechanism of σ(E)-dependent activation in X. campestris pv. campestris. We show that the rpoE gene is organized as a single transcription unit with the anti-σ gene rseA and the protease gene mucD and that rpoE transcription is autoregulated. rseA and mucD transcription is also controlled by a highly conserved σ(E)-dependent promoter within the σ(E) gene sequence. The σ(E)-mediated stress response is required for stationary-phase survival, resistance to cadmium, and adaptation to membrane-perturbing stresses (elevated temperature and ethanol). Using microarray technology, we started to define the σ(E) regulon of X. campestris pv. campestris. These genes encode proteins belonging to different classes, including periplasmic or membrane proteins, biosynthetic enzymes, classical heat shock proteins, and the heat stress σ factor σ(H). The consensus sequence for the predicted σ(E)-regulated promoter elements is GGAACTN(15-17)GTCNNA. Determination of the rpoH transcription start site revealed that rpoH was directly regulated by σ(E) under both normal and heat stress conditions. Finally, σ(E) activity is regulated by the putative regulated intramembrane proteolysis (RIP) proteases RseP and DegS, as previously described in many other bacteria. However, our data suggest that RseP and DegS are not only dedicated to RseA cleavage and that the proteolytic cascade of RseA could involve other proteases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.