Abstract

1-Hydroxy-2-acetonaphthone (HAN) has been extensively studied both experimentally and computationally to ascertain the existence of the excited-state proton transfer process. However, the process of full photocycle including the nonradiative relaxation pathways is yet to be proposed. Therefore, in the present study, we aim at providing a comprehensive picture of the excited-state processes in HAN including the proton transfer and relaxation processes through electronic structure calculations at second-order algebraic diagrammatic construction (ADC(2)) and complete active space second-order perturbation theory (CASPT2)//complete active space self-consistent field (CASSCF) and dynamics simulations at ADC(2) levels. Our studies show that the proton transfer process in the S1 state is barrierless and produces a stable keto form, which is in accordance with previous experimental and computational studies. Adiabatic dynamics simulations at the ADC(2) level confirmed the ultrafast process with an average proton transfer time of 43 fs. The resultant keto conformer then undergoes torsional rotation, leading to a conical intersection that mediates the internal conversion process to the ground state. Our dynamics simulation predicted that this deactivation process occurs at a time scale beyond 600 fs of simulation time. We also explored nonradiative relaxation from the enol Franck-Condon region, and this process was found to be improbable from the static point of view at both the ADC(2) and CASPT2 levels of theory due to a high energy barrier along the torsional coordinate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call