Abstract

Denitrification is a crucial process in the global nitrogen cycle, in which two functionally equivalent genes, nirS and nirK, catalyse the critical reaction and are usually used as marker genes. The nirK gene can function independently, whereas nirS requires additional genes to encode nitrite reductase and is more sensitive to environmental factors than nirK. However, the ecological differentiation mechanisms of those denitrifying microbial communities and their adaptation strategies to environmental stresses remain unclear. Here, we conducted metagenomic analysis for sediments and bioreactor samples from Lake Donghu, China. We found that nirS-type denitrifying communities had a significantly lower horizontal gene transfer frequency than that of nirK-type denitrifying communities, and nirS gene phylogeny was more congruent with taxonomy than that of nirK gene. Metabolic reconstruction of metagenome-assembled genomes further revealed that nirS-type denitrifying communities have robust metabolic systems for energy conservation, enabling them to survive under environmental stresses. Nevertheless, nirK-type denitrifying communities seemed to adapt to oxygen-limited environments with the ability to utilize various carbon and nitrogen compounds. Thus, this study provides novel insights into the ecological differentiation mechanism of nirS and nirK-type denitrifying communities, as well as the regulation of the global nitrogen cycle and greenhouse gas emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.