Abstract

The long-term prognosis of hypoplastic left heart syndrome is limited by progressive right ventricular dysfunction. The aim of this study was to determine the trends in single right ventricular systolic function between staged palliative surgeries using speckle-tracking and conventional echocardiography. There were 76 patients with functionally single right ventricles at the (1) pre-Norwood (n = 26), (2) pre-bidirectional cavopulmonary anastomosis (BCPA; n = 19), (3) pre-Fontan (n = 16), and (4) post-Fontan (n = 15) stages, compared with 30 controls of similar ages. Speckle-tracking-derived longitudinal and circumferential strain and strain rate, postsystolic strain index, and mechanical dyssynchrony index were compared with conventional measures of ventricular function. Differences between stages were analyzed using analysis of variance (P < .05). Strain rate was highest at the pre-Norwood stage and decreased at the other stages (longitudinal P < .0001, circumferential P = .0002), as opposed to controls, in whom strain rate was maintained. Longitudinal strain was significantly decreased at the pre-BCPA stage compared with the pre-Norwood stage (P = .004), but circumferential strain was maintained, resulting in a corresponding decrease in the ratio of longitudinal to circumferential strain, which failed to resemble that of controls. Longitudinal (P = .003) and circumferential (P = .002) postsystolic strain indices were greatest at the pre-BCPA stage. A decline in contractility occurred at the pre-BCPA stage. Although there was evidence of adaptation of the single right ventricle, this failed to resemble the normal left ventricle and may be insufficient to handle the chronic volume load or insult from previous surgery. These findings suggest an intrinsic inability of the single right ventricular myocardium to fully adapt to chronic systemic pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.