Abstract
An understanding of the evolution of human bipedalism can provide valuable insights into the biomechanical and physiological characteristics of locomotion in modern humans. The walking gaits of humans, other bipeds and most quadrupedal mammals can best be described by using an inverted-pendulum model, in which there is minimal change in flexion of the limb joints during stance phase. As a result, it seems logical that the evolution of bipedalism in humans involved a simple transition from a relatively stiff-legged quadrupedalism in a terrestrial ancestor to relatively stiff-legged bipedalism in early humans. However, experimental studies of locomotion in humans and nonhuman primates have shown that the evolution of bipedalism involved a much more complex series of transitions, originating with a relatively compliant form of quadrupedalism. These studies show that relatively compliant walking gaits allow primates to achieve fast walking speeds using long strides, low stride frequencies, relatively low peak vertical forces, and relatively high impact shock attenuation ratios. A relatively compliant, ape-like bipedal walking style is consistent with the anatomy of early hominids and may have been an effective gait for a small biped with relatively small and less stabilized joints, which had not yet completely forsaken arboreal locomotion. Laboratory-based studies of primates also suggest that human bipedalism arose not from a terrestrial ancestor but rather from a climbing, arboreal forerunner. Experimental data, in conjunction with anatomical data on early human ancestors, show clearly that a relatively stiff modern human gait and associated physiological and anatomical adaptations are not primitive retentions from a primate ancestor, but are instead recently acquired characters of our genus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.