Abstract
BackgroundAtaxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established.ResultsWe have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein.ConclusionOur analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species.
Highlights
Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2)
Identification of ataxin-2 genes across eukaryotes The domain architecture for Ataxin-2 is portrayed in Figure 1, which reveals Like RNA splicing domain Sm1 and Sm2 (Lsm) and Like-Sm-associated domain (LsmAD) domains in all orthologs described to date
We used the well conserved Lsm domain to search for putative orthologs using BLASTP based on the human Ataxin-2 protein and the Arabidopsis thaliana CID3 ortholog
Summary
Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. The association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established. The Ataxin-2 protein has been implicated in the broad modulation of local mRNA translation. An expansion of the polyglutamine (polyQ) tract in Ataxin-2 was identified as responsible for spinocerebellar ataxia type 2 (SCA2), a progressive neurodegenerative disease. SCA2 results from polyQ expansion over a certain threshold. Repeats of 32 and more cause SCA2 with a characteristic degeneration of cerebellar Purkinje cells [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.