Abstract
Thermal conductivity (TC) of a phase change material (PCM) may be enhanced by distributing nanostructured materials (NSMs) termed nano-PCM. It is critical to accurately estimate the TC of nano-PCM to assess heat transfer during phase transition processes, namely, solidification and melting. Here, we propose Gaussian process regression (GPR) strategies involving four various kernel functions (KFs) (including exponential (E), squared exponential (SE), rational quadratic (RQ), and matern (M)) to predict TC of n-octadecane as a PCM. The accessible computational techniques indicate the accuracy of our proposed GPR model compared to the previously proposed methods. In this research, the foremost forecasting strategy has been considered as a GPR method. This model consists of the matern KF whose R2 values of training and testing phases are 1 and 1, respectively. In the following, a sensitivity analysis (SA) is used to explore the effectiveness of variables in terms of outputs and shows that the temperature (T) of nanofluid (NF) is the most efficient input parameter. The work describes the physical properties of NFs and the parameters that should be determined to optimize their efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.