Abstract
Using a mechanical synthesis method in the form of ball milling and an additional annealing step, a novel and accelerated route for the synthesis of the thiospinels toyohaite (Ag2FeSn3S8) and rhodostannite (Cu2FeSn3S8) was discovered. Both thiospinels display faradaic efficiencies of up to 73% for CO2 reduction to CO using an organic electrolyte in an H-type cell. The materials were furthermore implemented in a zero-gap electrolyzer, with toyohaite producing 22% CO and 52% H2 at 100 mA cm-2 and rhodostannite 28% CO and 37% H2. The catalytically active sites are studied using density functional theory, revealing strong CO binding interactions on both Ag and Cu, whereas Sn is found to contribute to the decomposition of Ag2FeSn3S8 and Cu2FeSn3S8 by coordination with oxygen. Postmortem analysis of the thiospinel-based electrodes by means of SEM-EDX, XRD, XPS, and Mössbauer spectroscopy showed sulfur leaching from the catalysts after applying 100 mA cm-2. These spectroscopic results-in conjunction with DFT calculations of the oxidized surfaces-suggest that the catalytically active species consists of metal oxides. As a conversion of the metal sulfides into the corresponding metallic species was observed via XRD, the decomposition pathways of both catalysts were also computed using DFT; thus, elucidating the energetically most favorable decomposition products and expanding the possible composition of the catalysts postelectrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.