Abstract

The electro-hybrid ozonation-coagulation process (E-HOC) integrates electrocoagulation (EC) and ozonation simultaneously in a single unit. Nevertheless, the performance of the EC process is highly dependent on the polar connection configuration (monopolar vs. bipolar connection) and the type of generated coagulants (single-coagulant vs. dual-coagulants). In this study, the removal efficiency of the E-HOC process with different connection configurations and types of coagulants was assessed. The E-HOC process with bipolar connection (BE-HOC) exhibited higher removal efficiency for wastewater treatment plant (WWTP) effluent organic matter and ibuprofen (IBP) compared with the E-HOC process with monopolar connection (ME-HOC). Furthermore, dual-coagulant generation (released from both Al and Fe electrodes) in the BE-HOC process greatly improved the WWTP effluent organic matter and IBP removal efficiency. Lower energy consumption was observed for the BE-HOC process compared with the ME-HOC process. It was found that ozonation promoted the polymerization reactions during coagulant hydrolyzis in the E-HOC process. Compared with the ME-HOC process, the BE-HOC configuration and dual-coagulant mode further facilitated polymeric hydrolyzed coagulant species formation, thereby improving ozone catalytic and coagulation performance. According to trapping experiments and EPR analysis, •OH formation was enhanced in the BE-HOC process and dual-coagulant mode. In addition, more active reaction sites of generated hydrolyzed coagulant species were observed with bipolar connection and in the dual-coagulant generation mode based on X-ray photoelectron spectroscopy (XPS) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.