Abstract

The role of glycosylation in the binding of glycoproteins to carbohydrate substrates has not been well understood. The present study addresses this knowledge gap by elucidating the links between the glycosylation patterns of a model glycoprotein, a Family 1 carbohydrate-binding module (TrCBM1), and the thermodynamic and structural properties of its binding to different carbohydrate substrates using isothermal titration calorimetry and computational simulation. The variations in glycosylation patterns cause a gradual transition of the binding to soluble cellohexaose from an entropy-driven process to an enthalpy-driven one, a trend closely correlated with the glycan-induced shift of the predominant binding force from hydrophobic interactions to hydrogen bonding. However, when binding to a large surface of solid cellulose, glycans on TrCBM1 have a more dispersed distribution and thus have less adverse impact on the hydrophobic interaction forces, leading to overall improved binding. Unexpectedly, our simulation results also suggest an evolutionary role of O-mannosylation in transforming the substrate binding features of TrCBM1 from those of type A CBMs to those of type B CBMs. Taken together, these findings provide new fundamental insights into the molecular basis of the role of glycosylation in protein-carbohydrate interactions and are expected to better facilitate further studies in this area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call