Abstract
The filamentous φRSM phages (φRSM1 and φRSM3) have integration/excision capabilities in the phytopathogenic bacterium Ralstonia solanacearum. In the present study, we further investigated φRSM-like sequences present in the genomes of R. solanacearum strains belonging to the four major evolutionary lineages (phylotypes I-IV). Based on bioinformatics and comparative genomic analyses, we found that φRSM homologs are highly diverse in R. solanacearum complex strains. We detected an open reading frame (ORF)15 located upstream of the gene for φRSM integrase, which exhibited amino acid sequence similarity to phage repressor proteins. ORF15-encoded protein (a putative repressor) was found to encode a 104-residue polypeptide containing a DNA-binding (helix-turn-helix) domain and was expressed in R. solanacearum lysogenic strains. This suggested that φRSM3-ORF15 might be involved in the establishment and maintenance of a lysogenic state, as well as in phage immunity. Comparison of the putative repressor proteins and their binding sites within φRSM-related prophages provides insights into how these regulatory systems of filamentous phages have evolved and diverged in the R. solanacearum complex. In conclusion, φRSM phages represent a unique group of filamentous phages that are equipped with innate integration/excision (ORF14) and regulatory systems (ORF15).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.