Abstract

Organic aerosols (OAs) in particulate matter with an aerodynamic diameter of smaller than 2.5 μm (PM2.5) can affect the atmospheric radiation balance through varying molecular structure and light absorption of the aerosols. In this study, daytime and nighttime PM2.5 mass, and contents of OA including nitrated aromatic compounds (NACs), polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and hopanes were measured from April 11th to May 15th, 2017, at the coastal Sanya, China. The average concentration of 18 total quantified PAHs (∑PAHs) was 2.08 ± 1.13 ng·m−3, which was 2.8 and 12 times higher than that of ∑NACs and hopanes, while was 7.5 times lower that of n-alkanes. Combustion-derived PAHs contributed 74% to the ∑PAHs. This finding, in addition to a high benzo[a]pyrene/(benzo[a]pyrene+benzo[e]pyrene) ratio, indicates that the PAHs mainly derived from fresh fuel combustion during the sampling periods. Furthermore, dramatic day-night differences were observed in the loadings of total NACs, PAHs, and n-alkanes, which had a high coefficient of divergence values of 0.67, 0.47, and 0.32, respectively. Moreover, hopanes exhibited similar variation as well. The proportion of dimethyl-nitrophenol (DM-NP), dinitrophenol (DNP), and nitrosalicylic acid (NSA) in PM2.5 were higher in the daytime than at nighttime, suggesting the co-influence of primary emissions and secondary formation related to biomass combustion. The positive matrix factorization (PMF) model revealed that motor vehicle and biomass burning emissions were the two main pollution sources in the daytime, contributing 51.7% and 24.6%, respectively, of the total quantified OAs. The proportion of industrial coal combustion emissions was higher at nighttime (20.6%) than in daytime (10%). Both the PAHs and NACs displayed light absorbing capacities among OAs compounds over Sanya City, and thus their influence on solar radiation must be considered in the future control policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.