Abstract
Serine/threonine-specific phosphatases (PPs) represent, after protein tyrosine phosphatases, the second major class of enzymes that catalyze the dephosphorylation of proteins. They are classed in two large families, known as PPP and PPM, on the basis of sequence similarities, metal ion dependence, and inhibitor sensitivity. Despite their wide species distribution and broad physiological roles, the catalytic mechanism of PPM phosphatases has been primarily inferred from studies of a single enzyme, human PP2Calpha. Here, we report the biochemical characterization and the atomic resolution structures of a soluble PPM phosphatase from the saprophyte Mycobacterium smegmatis in complex with different ligands. The structures provide putative snapshots along the catalytic cycle, which support an associative reaction mechanism that differs in some important aspects from the currently accepted model and reinforces the hypothesis of convergent evolution in PPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.