Abstract

Buspirone is an anxiolytic drug that plays a significant role in managing anxiety disorders and alleviating their symptoms as well. Several techniques were utilized to study the interaction between buspirone and human serum albumin under physiological conditions, including UV–vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism, Fourier transform infrared spectroscopy (FT-IR), equilibrium dialysis, and molecular docking. The results of this study demonstrated that buspirone quenched the intrinsic fluorescence of human serum albumin through a mixed mechanism. Moreover, the binding constants (Kb), the quenching constants (Ksv), and thermodynamic parameters were calculated at various temperatures. The binding process of buspirone to human serum albumin showed a cooperative binding pattern, confirmed by the Scatchard diagram and Hill coefficient. Molecular docking results showed that buspirone interacted with the IIA, IIIA, and IIB subdomains of human serum albumin and slightly changed its conformation. It was also found that hydrophobic forces played a major role in this interaction. This study consequently proves that BSH as a drug can be transported by blood albumin. Additionally, due to its ratiometric response in absorbance upon binding to a biological target, HSA can be used as a molecular probe to follow biomolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.