Abstract

Black carbon (BC) is a main component of particulate matter (PM2.5). Due to their small size (<100nm), inhaled ultrafine BC nanoparticles may penetrate the lung alveoli, where they interact with surfactant proteins and lipids, causing more serious damage to human health. Here, BC was analyzed to investigate the binding mechanism of its interaction with protein and induction of cytotoxicity changes. The binding process and protein conformation between BC and a serum protein (bovine serum albumin, BSA) were monitored by using a fluorescence quenching technique and UV-vis absorption, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopies. The experimental results revealed that the fluorescence quenching of BSA induced by BC was a static quenching process and the hydrophobic force played the critical role in the interaction. The native conformation of BSA on the BC surface was slightly disturbed but obvious structural unfolding of the secondary structure did not occur. In the cytotoxicity study, BC nanoparticles with low concentrations exhibited strong toxicity towards BEAS-2B cells. However, the toxicity of BC nanoparticles could be mitigated by the presence of BSA. Therefore, proteins in biological fluids likely reduce the toxic effect of BC on human health. These findings delineated the binding mechanism and the toxicity between BC and the BSA-BC system, contributing to the understanding of the biological effects of BC exposure on human health in polluted atmospheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.