Abstract

As part of energy transition, marine renewable energy devices (MRED) are currently expanding in developed countries inducing the deployment of dense networks of submarine power cables. Concern has thus raised about the cable magnetic emissions (direct or alternating current) because of potential interference with the sensorial environment of magneto-sensitive species, such as sharks and rays. This study sought to assess the short-term behavioural responses of juvenile thornback rays (Raja clavata) (n = 15) to direct and alternating (50 Hz) uniform 450-μT artificial magnetic fields using 1 h focal-sampling design based on a detailed ethogram. Careful control of magnetic fields' temporal and spatial scales was obtained in laboratory conditions through a custom-made Helmholtz coil device. Overall, qualitative or quantitative behavioural responses of juvenile rays did not significantly vary between control vs. exposed individuals over the morning period. Nonetheless, rays under direct current magnetic field increased their activity over the midday period. Synchronisation patterns were also observed for individuals receiving alternating current exposure(chronologic and qualitative similarities)coupled with a high inter-individual variance. Further studies should consider larger batches of juveniles to address the effect of long-term exposure and explore the sensitivity range of rays with dose-response designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call