Abstract

Herein, we present results from molecular dynamics simulations of the DD-transpeptidase/penicillin-binding protein from Streptomyces K15 and its Michaelis complex with benzylpenicillin. For the apo-enzyme, six different configurations of the active site were modeled in aqueous solution and their relative stabilities were estimated by means of quantum mechanical energy calculations. The energetically most stable configuration has a neutral Lys(213) residue. In this configuration, the nucleophilic Ser(35) hydroxyl group interchanges with a water molecule in the "oxy-anion hole" and the Lys(38)/Lys(213) ammonium/amino groups are connected through the Ser(96) hydroxyl group. Subsequently, the enzyme-penicillin complexes corresponding to the four most stable configurations of the apo-enzyme were modeled. In the presence of the beta-lactam antibiotic, the configuration with a neutral Lys(38) residue is favored energetically and shows the best orientation for nucleophilic attack. In addition, a very stable contact between the Ser(35) hydroxyl group and the neutral amino group of Lys(38) supports the assignation of Lys(38) as the base catalyst for the acylation step. Finally, some mechanistic implications of enzyme-inhibitor contacts involving the benzylpenicillin carboxylate group are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call