Abstract

Peanut (Arachis hypogaea L.) plant has a high requirement for calcium (Ca) during its growth and development, and possesses the ability to accumulate cadmium (Cd) from soil. However, the precise mechanisms underlying the antagonistic effects between Ca and Cd remain unclear. This study aimed to explore the dynamic changes in Cd accumulation in peanut seedlings by varying the Ca-to-Cd concentration ratio (CRCa/Cd) from 250 to 3500. Additionally, the influence of ion channel competition and cell wall fixation in the root on Cd accumulation in peanuts was explored by analyzing Cd chemical forms, subcellular distribution, pectin content, and Cd2+ fluxes using a non-invasive micro-test technique (NMT). The findings revealed that Cd accumulation in peanut seedlings was significantly lower when the CRCa/Cd was higher than 2000. In the Ca-pretreated seedlings (cell wall fixation treatment), Cd content in the shoots and roots decreased by 18.9% and 25.0%, respectively, compared with the simultaneous exposure to Ca and Cd (ion channel competition treatment). Cd2+ influx in peanut roots decreased by 55.8% in the Ca-pretreated group. However, increasing the competitive strength of Ca2+ and Cd2+ did not affect Cd2+ influx under normal Ca conditions (>2 mM Ca). Meanwhile, Ca pretreatment significantly increased Cd distribution in the root cell wall, pectate, and protein-binding forms, while significantly reducing Cd distribution in root soluble components and inorganic Cd forms. The pectin content in the roots increased by 128% and 226% in the Ca and Cd simultaneous exposure treatment and Ca pretreatment, respectively. These results suggest that Ca pretreatment enhanced Cd retention in the root cell wall. Overall, exogenous Ca effectively mitigated Cd accumulation in peanut plants when the CRCa/Cd was below 2000, and Ca2+ channels partially facilitate the entry of Cd2+ into peanut roots. Under normal Ca supply conditions, exogenous Ca reduced Cd accumulation in peanuts primarily through root cell wall fixation rather than ion channel competition. Our findings provide insights into the mechanism by which Ca alleviates the uptake and transfer of Cd in peanuts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.