Abstract

Thermogravimetric analysis was employed to investigate the CO2 and H2O adsorption rates and water vapor equilibrium on anhydrous and prehydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidities of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and prehydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO2 concentration of 10% at 60 °C. CO2 capacity increased dramatically in the presence of different levels of humidity. Various kinetic models were systematically employed to interpret the experimental data including single- and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO2 with PEI-impregnated sorbents exhibiting a quick adsorption phase followed by a slow approach...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.