Abstract

Both cis- and trans- tetracyclic spiroindolines are the core of many important biologically active indole alkaloids, but the divergent synthesis of these important motifs is largely hampered by the limited stereoselectivity control. A facile stereoinversion protocol is reported here in Michael addition-initiated tandem Mannich cyclizations for constructing tetracyclic spiroindolines, providing an easy access to two diastereoisomeric cores of monoterpene indole alkaloids with high selectivity. The mechanistic studies including in situ NMR experiments, control experiments, and DFT calculations reveal that the reaction undergoes a unique retro-Mannich/re-Mannich rearrangement including a C-C bond cleavage that is very rare for a saturated six-membered carbocycle. Insights into the stereoinversion process have been uncovered, and the major effects were determined to be the electronic properties of N-protecting groups of the indole with the aid of Lewis acid catalysts. By understanding these insights, the stereoselectivity switching strategy is also smoothly applied from enamine substrates to vinyl ether substrates, which are enriched greatly for the divergent synthesis and stereocontrol of monoterpene indole alkaloids. The current reaction also proves to be very practical and was successfully applied to the gram-scale total synthesis of strychnine and deethylibophyllidine in short routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.