Abstract

BackgroundThe Antarctic clam, Laternula elliptica, is an infaunal stenothermal bivalve mollusc with a circumpolar distribution. It plays a significant role in bentho-pelagic coupling and hence has been proposed as a sentinel species for climate change monitoring. Previous studies have shown that this mollusc displays a high level of plasticity with regard to shell deposition and damage repair against a background of genetic homogeneity. The Southern Ocean has amongst the lowest present-day CaCO3 saturation rate of any ocean region, and is predicted to be among the first to become undersaturated under current ocean acidification scenarios. Hence, this species presents as an ideal candidate for studies into the processes of calcium regulation and shell deposition in our changing ocean environments.Results454 sequencing of L. elliptica mantle tissue generated 18,290 contigs with an average size of 535 bp (ranging between 142 bp-5.591 kb). BLAST sequence similarity searching assigned putative function to 17% of the data set, with a significant proportion of these transcripts being involved in binding and potentially of a secretory nature, as defined by GO molecular function and biological process classifications. These results indicated that the mantle is a transcriptionally active tissue which is actively proliferating. All transcripts were screened against an in-house database of genes shown to be involved in extracellular matrix formation and calcium homeostasis in metazoans. Putative identifications were made for a number of classical shell deposition genes, such as tyrosinase, carbonic anhydrase and metalloprotease 1, along with novel members of the family 2 G-Protein Coupled Receptors (GPCRs). A membrane transport protein (SEC61) was also characterised and this demonstrated the utility of the clam sequence data as a resource for examining cold adapted amino acid substitutions. The sequence data contained 46,235 microsatellites and 13,084 Single Nucleotide Polymorphisms(SNPs/INDELS), providing a resource for population and also gene function studies.ConclusionsThis is the first 454 data from an Antarctic marine invertebrate. Sequencing of mantle tissue from this non-model species has considerably increased resources for the investigation of the processes of shell deposition and repair in molluscs in a changing environment. A number of promising candidate genes were identified for functional analyses, which will be the subject of further investigation in this species and also used in model-hopping experiments in more tractable and economically important model aquaculture species, such as Crassostrea gigas and Mytilus edulis.

Highlights

  • The Antarctic clam, Laternula elliptica, is an infaunal stenothermal bivalve mollusc with a circumpolar distribution

  • It has been the subject of significant investigation of its thermal tolerance and the expected impact of climate change [13,14,15]

  • We describe the transcriptome of the mantle tissue of L. elliptica, focussing on the datamining of genes involved in calcium regulation and shell deposition

Read more

Summary

Introduction

The Antarctic clam, Laternula elliptica, is an infaunal stenothermal bivalve mollusc with a circumpolar distribution. The Southern Ocean has amongst the lowest present-day CaCO3 saturation rate of any ocean region, and is predicted to be among the first to become undersaturated under current ocean acidification scenarios This species presents as an ideal candidate for studies into the processes of calcium regulation and shell deposition in our changing ocean environments. Antarctic marine invertebrates are stenothermal [14] and L. elliptica is one of the more sensitive species [1316] These animals suffer significant mortalities at 4-5°C, but lose essential biological functions, such as the ability to bury in sediment, much earlier, at only 1-2°C over current summer maximum sea water temperatures [13,14,15]. The predictions of the effect of these thermal changes on Antarctic marine biodiversity are complex [20] and further complicated by reductions in ocean pH

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.