Abstract

One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD). Despite the pervasiveness of AD being considerable, the rates of both diagnosis and therapy are comparatively less and still lacking. For the treatment of AD, acetylcholinesterase inhibitors and NMDA receptor antagonists (Memantine) have received clinical approval. The approved drugs are only capable of mitigating the symptoms; however, halting the progression of the disease remains a matter of substantial concern. MicroRNAs (miRs) are a subclass of non-coding single-stranded RNA molecules that target mRNAs to control the expression of genes in certain tissues. Dysregulation in the expression and function of miRs contributes to a neurodegeneration-like pathogenesis seen in Alzheimer's disease (AD), featuring hallmark characteristics such as Aβ aggregation, hyper-phosphorylation of Tau proteins, mitochondrial dysfunction, neuroinflammation, and apoptosis. These factors collectively underpin the cognitive deterioration and learning disabilities associated with AD. According to the research, numerous miRs have considerably different expression patterns in AD patients compared to healthy people. Due to these attributes, miRs prove to be effective diagnostic and therapeutic agents for AD. This review will examine clinical and preclinical data concerning the potential of miRs as diagnostic and therapeutic agents, utilizing various techniques (such as miR antagonists or inhibitors, miR agonists or mimics, miR sponges, and miR antisense oligonucleotides) to target specific pathogenic mechanisms in AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call