Abstract
Peanut shell biochar (BC) supported on Cu-doped FeOOH composite (Cu-FeOOH/BC) was synthesized using a facile and scalable method. The Cu-FeOOH/BC samples were characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy equipped with an energy-dispersive spectrometer (SEM-EDS), x-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) techniques. Novel catalytic composites with different Cu/Fe molar ratios were compared systematically by activating persulfate (PS) for the tetracycline (TC) degradation. 0.5Cu-1FeOOH/BC (Cu/Fe molar ratio = 0.5:1) was confirmed as the optimum activation material and the removal of TC reached 98.0% after 120min by combining with 20mM PS at pH 7.0 and 25°C. The influencing factors including catalyst loading, PS dosage, water matrix species, and pH on the performance system of 0.5Cu-1FeOOH/BC-PS were investigated, respectively. Reaction rate constants (Kobs) on catalyst dosages (0.05, 0.10, 0.20, and 0.30gL-1) were 0.0072, 0.0101, 0.0244, and 0.0144min-1, and 0.0090, 0.0146, 0.0244, and 0.0178min-1 for the change of PS concentrations (5, 10, 20, and 30mM), which indicated that increasing the concentrations of catalyst and PS appropriately improved TC degradation, but excessive dosages inhibited the reaction process of TC removal. The TC removal rate was inhibited by inorganic anions with the following order of HCO3- > Cl- > HPO42- > SO42- > NO3-. Free radical quenching and capture experiments under different pH values revealed that sulfate radicals existed predominantly in acidic conditions and hydroxyl radicals in alkaline conditions. The catalyst showed an excellent recyclability and stability and the removal efficiency of TC still remained over 90% after five consecutive uses. To conclude, coupling of 0.5Cu-1FeOOH/BC and PS can be successfully applied as an effective and stable technique for the treatment of refractory organic pollutants in wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.