Abstract
Surface plasmon polaritons (SPPs) can be supported by metal–dielectric interfaces and have been exploited for various applications. Typically, most studies deal with plasmons excited in pure metallic films or homogenous alloy thin films and the understanding of plasmon behavior in films with complex microstructures is limited. In this work, we numerically study the surface plasmons that are supported at the interface of an Ag–Cu alloy film that undergoes spinodal decomposition to produce a two-phase microstructure, when an initially compositionally homogenous alloy film (with composition within spinodal limits) is processed within the miscibility gap. We use phase-field simulated spinodally decomposed microstructures for our optical simulations to study the effect of microstructure on propagating surface plasmons in Ag–Cu alloy films. We demonstrate that the far-field response is governed principally by the composition of the alloy film and is not affected by the microstructural feature size. On the contrary, near-fields are strongly dependent on the microstructure and composition of the films. The origin of inhomogenous fields is demonstrated to be the result of constructive and destructive interference of SPPs. Finally, we demonstrate the enhancement of both transverse and longitudinal components of spin angular momentum in these phase-separated alloy films. The longitudinal components can be enhanced by more than a hundred times in the alloy films as compared to the pure metal films. This study paves the way for exploiting multi-phase alloy thin films for applications in sensing, nanomanipulation, and light modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.