Abstract

Carbon dots (CDs) are potentially useful in many areas such as bioimaging, light-emitting diodes, and sensing because of their excellent optical properties, high biocompatibility, and low toxicity. Knowledge of their photoluminescence (PL) mechanisms, which have been widely studied, is of significance in guiding the synthesis and promoting applications of CDs with tunable PL emissions. However, the intrinsic mechanism of PL emission remains unclear, and a unified mechanism has not been found because of differences in particle structures. This review generalizes the categories of CDs, noting their structural diversity. Three types of PL mechanism pertaining to structural differences are outlined: internal factors dominated emission (including the conjugation effect, the surface state, and the synergistic effect), external factors dominated emission (including the molecular state and the environment effect), and crosslink-enhanced emission. Optical applications of CDs are also briefly mentioned. Finally, the prospects for research into PL mechanisms are discussed, noting the remaining challenges and directions for future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.