Abstract
Biologically synthesized palladium nanoparticles (bio-Pd) have attracted considerable interest as promising green catalysts for environmental remediation. However, the mechanisms by which microorganisms produce bio-Pd remain unclear. In the present study, we investigated the roles of Shewanella oneidensis MR-1 and its NADH dehydrogenases and hydrogenases (HydA and HyaB) in bio-Pd production using formate as the electron donor. The roles of NADH dehydrogenases and hydrogenases were studied by inhibiting NADH dehydrogenases and using hydrogenase mutants (ΔhydA, ΔhyaB, and ΔhydAΔhyaB), respectively. The results showed ~97% reduction of palladium by S. oneidensis MR-1 after 24 h using 250 μM palladium and 500 μM formate. Electron microscopy images showed the presence of bio-Pd on both the outer and cytoplasmic membranes of S. oneidensis MR-1. However, the inhibition of NADH dehydrogenases in S. oneidensis MR-1 resulted in only ~61% reduction of palladium after 24 h, and bio-Pd were not found on the outer membrane. The mutants lacking one or two hydrogenases removed 91–96% of palladium ions after 24 h and showed more cytoplasmic bio-Pd but less periplasmic bio-Pd. To the best of our knowledge, this is the first study to demonstrate the role of NADH dehydrogenases of S. oneidensis MR-1 in the formation of bio-Pd on the outer membrane. It also demonstrates that the hydrogenases (especially HyaB) of S. oneidensis MR-1 contribute to the formation of bio-Pd in the periplasmic space. This study provides mechanistic insights into the production of biogenic metal nanoparticles towards their possible use in industrial and environmental applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.