Abstract

Olive (Olea europaea L.) growing has outstanding economic relevance in Spain, the main olive oil producer and exporter in the world. Fruit skin properties are very relevant for fruit and oil quality, water loss, and susceptibility to mechanical damage, rots, and infestations, but limited research focus has been placed on the cuticle of intact olive fruit. In this work, fruit samples from nine olive cultivars (“Arbequina,” “Argudell,” “Empeltre,” “Farga,” “Manzanilla,” “Marfil,” “Morrut,” “Picual,” and “Sevillenca”) were harvested from an experimental orchard at three different ripening stages (green, turning, and ripe), and cuticular membranes were enzymatically isolated from fruit skin. The total contents of cuticular wax and cutin significantly differed among cultivars both in absolute and in relative terms. The wax to cutin ratio generally decreased along fruit maturation, with the exception of “Marfil” and “Picual.” In contrast, increased water permeance values in ripe fruit were observed uniquely for “Argudell,” “Morrut,” and “Marfil” fruit. The toluidine blue test revealed surface discontinuities on green samples of “Argudell,” “Empeltre,” “Manzanilla,” “Marfil,” and “Sevillenca” fruit, but not on “Arbequina,” “Farga,” “Morrut,” or “Picual.” No apparent relationship was found between water permeability and total wax coverage or the results of the toluidine blue test. The composition of cuticular waxes and cutin monomers was analyzed in detail, and sections of fruit pericarp were stained in Sudan IV for microscopy observations. Skin surface topography was also studied by means of fringe projection, showing large differences in surface roughness among the cultivars, “Farga” and “Morrut” fruits displaying the most irregular surfaces. Cultivar-related differences in cuticle and surface features of fruit are presented and discussed.

Highlights

  • The olive (Olea europaea L.) tree is considered one of the oldest crops to have been domesticated by humans (Besnard et al, 2018)

  • Fruit samples from nine olive (Olea europaea L.) autochthonous Spanish cultivars (“Arbequina,” “Argudell,” “Empeltre,” “Farga,” “Manzanilla,” “Marfil,” “Morrut,” “Picual,” and “Sevillenca”) were hand-collected at an experimental orchard located at IRTA-Mas Bové (Constantí, Spain; 41°09’ N, 1°12’ E; altitude 100 m) from trees supplied with drip irrigation

  • Due to differing ripening patterns, data corresponding to the turning stage are lacking for three cultivars (“Manzanilla,” “Marfil,” and “Sevillenca”), as not enough fruit material was found at the sampling dates

Read more

Summary

Introduction

The olive (Olea europaea L.) tree is considered one of the oldest crops to have been domesticated by humans (Besnard et al, 2018). Around 90% of the world production of olives is used for the production of olive oil, and the rest is employed for the manufacture of table olives. More than half of the total world olive production is grown in countries in the Mediterranean basin, Spain being the main olive oil producer and exporter in the world. In Mediterranean areas, crops often develop under adverse environmental conditions, including restricted water availability, high temperatures, or elevated UV irradiation levels, which are expected to exacerbate in a scenario of global climate change. Being the outer layer of the epidermis, the cuticle represents the first barrier against abiotic and biotic stress factors

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call