Abstract

The strong excitonic effect significantly influences the efficiency of electron-hole pair generation. Therefore, promoting the dissociation of excitons into free charge carriers has drawn much attention. In this study, nitrogen (N)-doped BiOBr photocatalyst (BOBNC) modified with carbon quantum dots (CQDs) was synthesized via a solvothermal method. We demonstrated through photoluminescence and photoelectrochemical techniques the synergistic effect of oxygen vacancies and CQDs, facilitating exciton dissociation and charge carrier migration, consequently significantly enhancing the electron density in the material. Compared to pure BiOBr, degradation experiments revealed that the optimized doping ratio of 0.5BOBNC with CQDs increased the rate constant for sulfamethoxazole (SIZ) by 19.89 times. Furthermore, based on quenching experiments, electron spin resonance (ESR) tests, and DFT calculations, h+, O2•− and 1O2 were identified as the primary reactive species for SIZ degradation, and a photocatalytic mechanism was proposed. Additionally, the influence of various environmental factors on the photocatalytic system was investigated. In conclusion, this work not only contributes to a profound understanding of BiOBr exciton dissociation but also presents a promising photocatalytic technique for the remediation of diverse water environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call