Abstract

Amorphous calcium phosphosilicate xerogels of high phosphate content were synthesized by a new sol–gel route. Their structural characterization was achieved through the combination of complementary analytical methods, including advanced solid state NMR and scattering techniques. Two representative compositions, with similar P contents but a different Ca:Si ratio, have been chosen for detailed study. Using 43Ca solid state NMR and Ca K-edge XANES, the Ca local environment in the samples was characterized, revealing that it is similar for both compositions. It was found that P O Si linkages are present in both compounds after calcination at 350 °C. However, for the sample with the lower Si content, a higher fraction of unusual 6-coordinated silicon was observed. Interestingly, calcium was also found to enhance the network connectivity and to enter the phosphosilicate network without the need for calcination at high temperature, which is advantageous in comparison with syntheses performed previously on similar compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.