Abstract
BackgroundThe lower-extremity motor coordination test (LEMOCOT) is a performance-based measure used to assess motor coordination deficits after stroke. We aimed to automatically quantify performance on the LEMOCOT and to extract additional performance parameters based on error analysis in persons with stroke (PwS) and healthy controls. We also aimed to explore whether these parameters provide additional information regarding motor control deficit that is not captured by the traditional LEMOCOT score. In addition, the associations between the LEMOCOT score, parameters of error and performance-based measures of lower-extremity impairment and gait were tested.MethodsTwenty PwS (age: 62 ± 11.8 years, time after stroke onset: 84 ± 83 days; lower extremity Fugl-Meyer: 30.2 ± 3.7) and 20 healthy controls (age: 42 ± 15.8 years) participated in this cross-sectional exploratory study. Participants were instructed to move their big toe as fast and accurately as possible between targets marked on an electronic mat equipped with force sensors (Zebris FDM-T, 60 Hz). We extracted the contact surface area of each touch, from which the endpoint location, the center of pressure (COP), and the distance between them were computed. In addition, the absolute and variable error were calculated.ResultsPwS touched the targets with greater foot surface and demonstrated a greater distance between the endpoint location and the location of the COP. After controlling for the number of in-target touches, greater absolute and variable errors of the endpoint were observed in the paretic leg than in the non-paretic leg and the legs of controls. Also, the COP variable error differentiated between the paretic, non-paretic, and control legs and this parameter was independent of in-target counts. Negative correlations with moderate effect size were found between the Fugl Meyer assessment and the error parameters.ConclusionsPwS demonstrated lower performance in all outcome measures than did controls. Several parameters of error indicated differences between legs (paretic leg, non-paretic leg and controls) and were independent of in-target touch counts, suggesting they may reflect motor deficits that are not identified by the traditional LEMOCOT score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.