Abstract

Cancer heterogeneity poses a significant hurdle to the successful treatment of the disease, and is being influenced by genetic inheritance, cellular and tissue biology, disease development, and response to therapy. While chemotherapeutic drugs have demonstrated effectiveness, their efficacy is impeded by challenges such as presence of resilient cancer stem cells, absence of specific biomarkers, and development of drug resistance. Often chemotherapy leads to a myriad of epigenetic, transcriptional and post-transcriptional alterations in gene expression as well as changes in protein expression, thereby leading to massive metabolic reprogramming. This review seeks to provide a detailed account of various transcriptional regulations, proteomic changes, and metabolic reprogramming in various cancer models in response to three primary chemotherapeutic interventions, docetaxel, carboplatin, and doxorubicin. Discussing the molecular targets of some of these regulatory events and highlighting their contribution in sensitivity to chemotherapy will provide insights into drug resistance mechanisms and uncover novel perspectives in cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.