Abstract
The intercalation of organic molecules is a promising approach to modulate the structure of 2D transition metal borides (MBenes), aiming to enhance charge transport and improve electrochemical performance in energy storage applications. However, key questions remain regarding how organic molecules with diverse functionalities penetrate and align between the MBene layer, as well as the mechanism of charge redistribution during intercalation. Addressing these questions is crucial for guiding the design of Organic-MBene heterostructures. To this end, a comprehensive approach combining theoretical calculations and experimental analyses was employed to explore the self-assembly mechanisms of organic molecules featuring N, O, S and tertiary amine end groups on the MoB-MBene surface. Experimental characterizations confirm that the interaction between MoB and organic compounds depends on the end groups. First principles calculations demonstrate that organic molecules tend to adopt a flat configuration on the MoB surface during molecular assembly. Calculations also reveal that the binding and charge transfer processes from organic molecules to MoB are highly dependent on the specific end groups, consistent with experimental observations. Furthermore, the effect of combining organic molecules with MoB on battery performance was further discussed, offering new insights for advancing the research and development of MBenes in aqueous battery systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.